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The traditional node percolation map of directed networks is reanalyzed in terms of edges. In the percolated
phase, edges can mainly organize into five distinct giant connected components, interfaces bridging the com-
munication of nodes in the strongly connected component and those in the in and out components. Formal
equations for the relative sizes in the number of edges of these giant structures are derived for arbitrary joint
degree distributions in the presence of local and two-point correlations. The uncorrelated null model is fully
solved analytically and compared against simulations, finding an excellent agreement. Interfaces, and their
particular conformations giving place from “hairy ball” percolation landscapes to bottleneck straits, could bring
new light to the discussion of how a structure is interwoven with functionality in flow networks.
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I. INTRODUCTION

The theory of percolation applied to random networks �1�
has proven to be one of the most notorious advances in com-
plex network science �2–4�. Its importance goes beyond the
production in the short term of theoretical results, which are
general and relevant to systems in many different fields. The
implications are far reaching. On one hand, a number of
different problems have a direct interpretation in terms of
percolation or can be mapped to it, such as the study of
resilience or vulnerability in front of random failures �5� or
susceptible-infected-recovered �SIR� epidemic spreading
models �6�. On the other hand, the emergent percolation
landscape of self-organized systems can strongly affect prop-
erties such as fluency or navigability. Hence, its conforma-
tion should ensure efficient communication at the global
level for the whole to organize and develop functionality.

In the case of undirected networks, where elements are
linked by channels operating in both directions, the basic
percolation discussion was centered around the appearance
of a macroscopic portion of connected nodes. The critical
point for the appearance of this giant component and its rela-
tive size in the number of nodes and edges was determined
�5,7–10�, also in the presence of specific structural attributes
�11–16,19�. In its turn, the standard picture in directed graphs
�9,14,17,18� establishes that this giant connected component
may become much more complex and internally organized in
three main giant structures, the in component, the out com-
ponent, and the strongly connected component, as well as
other secondary aggregates such as tubes or tendrils. This
conformation, sometimes represented as a bow-tie diagram
�20�, denotes a potential global flow—of matter, energy, in-
formation, etc.—organized around a core which usually pro-
cesses input into output.

In this work, we will see that the percolation landscape,
the aggregate of macroscopic connectivity structures in the
percolated phase above the critical point, is further shaped
when edges, the zero-level primary building blocks of net-
works along with nodes, are taken as starring elements. Five
distinct components are found to be relevant in the edge
percolation map of directed networks, the strongly connected
component bridged by two newly identified interfaces to the

peripheral in and out components. In Sec. II, we give their
definitions and present analytical computations for their rela-
tive sizes based on the usual locally treelike assumption and
the generating function formalism in the presence of local
and two-point correlations. In Sec. III, the formal equations
for the most general situation will be reformulated for uncor-
related networks as null models. The corresponding analyti-
cal results will be compared to simulations for networks with
exponential in- and out-degree distributions and with scale-
free in-degree and exponential out-degree distributions. A
discussion of the implications coming out of this description
will be provided in Sec. IV, where the concept of interface
will be further examined along indications of the potential
relevance of its particular conformation, that could produce
from “hairy ball” percolation landscapes to bottleneck straits.
We end by summarizing and giving some final remarks in
Sec. V.

II. EDGE COMPONENTS IN DIRECTED NETWORKS

In the traditional node percolation map of directed net-
works the core structure is the giant strongly connected com-
ponent �SCC�, where all vertices within can reach each other
by a directed path. When present, it serves as a connector of
the giant in component �IN�, composed by all vertices that
can reach the SCC but cannot be reached from it, to the giant
out component �OUT�, made of all vertices that are reachable
from the SCC but cannot reach it.

From the point of view of edges, the IN and the OUT
unfold into two structures each, the edge in component �ICE�
and the in interface �ITF�, and the edge out component
�OCE� and the out interface �OTF�, respectively �see Fig. 1�.
The number of relevant structures is increased to five as a
consequence of the fact that, whereas nodes are point objects
belonging at most to one of the three node components,
edges can be considered as extended objects in the sense that
they could belong simultaneously to two different node com-
ponents, having for instance one end in the IN or OUT and
the other in the SCC. This fact points to the necessity of
defining new classes for edges. We will not take into account
aggregates such as tendrils or tubes, so edges will be classi-
fied into five different categories depending on the affiliation
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of the nodes they are joining. Let us recall that, in the node
percolation map, the out and in components of individual
vertices are defined as the number of vertices �plus itself�, si,
that are reachable from a given vertex and the number of
vertices �plus itself�, so, that can reach that vertex, respec-
tively. The SCC can be thus thought of as the set of vertices
with infinite in and out components simultaneously, and the
OUT and IN as the set of vertices with infinite in component
and infinite out component, respectively �excluding the
SCC�. Taking this into consideration, we give the following
definitions for the principal components of the edge percola-
tion map of random directed networks:

�a� The edge in component, ICE, is the set of edges join-
ing initial and terminal nodes with finite in component and
infinite out component. These edges are connecting nodes
within the IN.

�b� The in interface, ITF, is the set of edges joining initial
nodes with finite in component and infinite out component
and terminal nodes with infinite in and out components.
These edges are bridging the ICE and the SCE �see below�
by connecting nodes in the IN to nodes in the SCC.

�c� The edge strongly connected component, SCE, is the
set of edges joining initial and terminal nodes with infinite in
and out components. These edges are connecting nodes
within the SCC.

�d� The out interface, OTF, is the set of edges joining
initial nodes with infinite in and out components and termi-
nal nodes with infinite in component and finite out compo-
nent. These edges are bridging the SCE and the OCE by
connecting nodes in the SCC to nodes in the OUT.

�e� The edge out component, OCE, is the set of edges
joining initial and terminal nodes with infinite in component
and finite out component. These edges are connecting nodes
within the OUT.

The critical point for the simultaneous appearance of the
giant node components trivially marks also the emergence of
the five giant edge components. In general, the condition
�m�1 characterizes the percolated phase, where �m stands
for the maximum eigenvalue of a characteristic matrix. In the
case of purely directed random networks with two-point cor-
relations it was found to be �18�

Ckk�
o = ko�Po�k��k� ,

Ckk�
i = ki�Pi�k��k� , �1�

where k��ki ,ko�, ki being the incoming number of connec-
tions and ko the outgoing ones. The transition probabilities

Pi�k� �k� and Po�k� �k� measure the likelihood to reach a
vertex of degree k� leaving from a vertex of degree k using
an incoming and an outgoing edge, respectively.

In order to compute the sizes of the different giant com-
ponents in the number of edges, the already traditional ap-
proach used in previous developments is also appropriate
with necessary adjustments. The mathematical methodology
is based on the generating function formalism while the
physical methodology explores the network with branching
processes which expand under the locally treelike assump-
tion �9,17,18�. Maximally random purely directed networks
with local and two-point correlations will be considered.
This implies that the relevant information about the topology
of the network is encoded in the joint degree distribution
P�k ,k��, where k is the degree of the initial node and k� the
degree of the terminal node. Equivalently, we consider the
degree distribution P�k� along with the transition probabili-
ties Pi�k� �k� and Po�k� �k�. These are related through the
degree detailed balance condition �18,21�

koP�k�Po�k��k� = ki�P�k��Pi�k�k�� , �2�

which is fulfilled whenever the network is closed and does
not present dangling edge ends. Although it is satisfied for
the whole graph, the three node components do not fulfill it
separately. If one restricts to consider the nodes within the
boundaries of each component along all their connections,
dangling ends can be found. The interfaces are just the sets
of edges that prevent the node components from fulfilling the
detailed balance condition.

Apart from the distributions above, the calculations also
rely on the edge joint distribution G�si ,so ;si� ,so�� which mea-
sures the number of vertices �plus itself�, so, that are reach-
able from the initial vertex and the number of vertices �plus
itself�, si, that can reach the initial vertex, simultaneously to
the number of vertices �plus itself�, so�, that are reachable
from the terminal vertex and the number of vertices �plus
itself�, si�, that can reach the terminal vertex. Notice that if
computations are done for node components, the relevant
distribution is G�si ,so� and refers to just one node. According
to the definitions above, the relative sizes of the different
giant edge components can be formally written as

gice = �
si

�
si�

G�si,so = �;si�,so� = �� ,

goce = �
so

�
so�

G�si = �,so;si� = �,so�� ,

gitf = �
si

G�si,so = �;si� = �,so� = �� ,

gotf = �
so�

G�si = �,so = �;si� = �,so�� ,

gsce = G�si = �,so = �;si� = �,so� = �� , �3�

where we have made use of the fact that if the terminal node
has an infinite out component so it has the initial node and,

FIG. 1. �Color online� Schematic representation of the main
giant components in the edge percolation map. As illustrated, the
different components may be heterogeneous in their sizes.
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analogously, if the in component of the initial node is infinite
so will be the in component of the terminal node. These
functions can be computed from marginal distributions asso-
ciated to G�si ,so ;si� ,so��. Their dependence on a given vari-
able indicates that the corresponding in or out component of
the corresponding vertex is finite regardless of the sizes of
the rest of the involved single node components. In terms of
these marginal probabilities, the relative sizes are

gice = �
si,si�

G�si, ;si�,� − �
si,si�,so�

G�si, ;si�,so�� ,

goce = �
so,so�

G�,so; ,so�� − �
si,so,so�

G�si,so; ,so�� ,

gitf = �
si

G�si, ; ,� − �
si,si�

G�si, ;si�,� − �
si,so�

G�si, ; ,so��

+ �
si,si�,so�

G�si, ;si�,so�� ,

gotf = �
so�

G�, ; ,so�� − �
so,so�

G�,so; ,so�� − �
si,sout�

G�si, ; ,so��

+ �
si,so,so�

G�si,so; ,so�� ,

gsce = 1 − �
si

G�si, ; ,� − �
so�

G�, ; ,so�� + �
si,so�

G�si, ; ,so�� . �4�

For instance, G�si , ;si� , � measures the probability of an edge
connecting an initial node with finite in component of size si
to a terminal node with finite in component of size si�, re-
gardless of the sizes of the out components of connected
nodes, that could be finite or infinite �notice that for ease of
notation we just left blank the spaces corresponding to the
marginalized variables�. In a heterogenous network, these
functions depend on the degrees of the nodes at the ends of
the edge under consideration. Edges connecting nodes in the
same degree classes will be considered statistically equiva-
lent, so that these marginal probabilities should be rewritten
over joint degree classes, for instance G�si , ;si ,so��
=�k,k�P�k ,k��G�si , ;si ,so� �k ,k�� and analogously for the
rest. To calculate these conditional probabilities we have to
introduce at this point the probability functions go�s �k� and
gi�s �k�, which represent the distributions of the number of
reachable vertices from a vertex, given that we have arrived
to it from another initial vertex of degree k following one of
its outgoing or incoming edges, respectively. These functions
are exactly the same as those already introduced in previous
works for the computation of the sizes of the IN, OUT, and
SCC. The marginal conditional probabilities can then be ex-
pressed as functions of these single-node probabilities, that
in its turn obey closed equations obtained from an iterative
procedure which applies the techniques of random branching
processes under the locally treelike assumption. This hypoth-
esis is correct if the length of cycles present in the network is
of the order of its diameter, so that the sizes of single node

components can be exposed by subsequent jumps from
neighbors to neighbors of neighbors without returning to al-
ready visited ones. In this way, the problem can be formally
solved in the general correlated case.

As a way of example, it will suffice here to provide the
expression of one of the marginal conditional distributions as
a function of go�s �k� and gi�s �k� to illustrate the derivation.
Assuming the locally treelike condition, one of the two rel-
evant marginal conditional probabilities in the computation
of the ICE can be written as

G�si, ;si�,so��k,k��

= �
s1
i
¯ski

i

gi�s1
i �k� ¯ gi�ski

i �k��s1
i +¯+ski

i +1,si

� �
s1�

i
¯s

ki�−1
�i

gi�s1�
i�k�� ¯ gi�ski�−1

�i �k���si+s1�
i+¯+ski−1�i +1,si�

� �
s1�

o
¯s

ko�
�o

go�s1�
o�k�� ¯ go�sko�

�o�k���s1�
o+¯+sko

�o+1,so�
. �5�

This expression involves three simultaneous computations:
the number of vertices that can reach the initial node, the
number of vertices that can reach the terminal node, and the
number of nodes that the terminal node can reach itself. The
procedure starts from an edge linking nodes of degrees k and
k� and splits the sets si, si�, and so� into the different contri-
butions associated to the corresponding neighbors. For in-
stance, the number of edges that bring to the degree-k initial
node, si, can be computed as the sum of the different contri-
butions that can reach each of its ki incoming neighbors, s1

i

+ ¯ +ski

i . This corresponds to the first set of summations of
the three that appear in Eq. �5�. Independent equations for
the functions gi and go can be found by expanding iteratively
this procedure,

gi�s�k� = �
k�

Pi�k��k�gi�s1�k�� ¯ gi�ski�
�k���Ski�

,s,

go�s�k� = �
k�

Po�k��k�go�s1�k�� ¯ go�sko�
�k���Sko�

,s, �6�

where Ski�
=s1+ ¯ +ski�

+1 and Sko�
=s1+ ¯ +sko�

+1. These
equations become tractable using the generating function for-
malism. In mathematical terms, generating functions are ob-
tained by applying the discrete Laplace space transformation

f̂�z���sf�s�zs. Once transformed for the variables s, Eqs. �6�
become closed for ĝi and ĝo,

ĝi�z�k� = z�
k�

Pi�k��k�ĝi�z�k��ki�,

ĝo�z�k� = z�
k�

Po�k��k�ĝo�z�k��ko�. �7�

All summations over finite sizes of the joint conditional size
distributions correspond to their generating functions evalu-
ated at z=1. Eventually, those depend on ĝi�1 �k� and
ĝi�1 �k�,
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Ĝ�1, ;1,1� = �
k,k�

P�k,k��ĝi�1�k�kiĝi�1�k��ki�−1ĝo�1�k��ko�,

Ĝ�1,1;,1� = �
k,k�

P�k,k��ĝi�1�k�kiĝo�1�k�ko−1ĝo�1�k��ko�,

Ĝ�,1;,1� = �
k,k�

P�k,k��ĝo�1�k�ko−1ĝo�1�k��ko�,

Ĝ�1, ;1,� = �
k,k�

P�k,k��ĝi�1�k�kiĝi�1�k��ki�−1,

Ĝ�1, ;,1� = �
k,k�

P�k,k��ĝi�1�k�kiĝo�1�k��ko�,

Ĝ�, ; ,1� = �
k,k�

P�k,k��ĝo�1�k��ko�,

Ĝ�1, ;,� = �
k,k�

P�k,k��ĝi�1�k�ki. �8�

These expressions will allow us to compute easily the rela-
tive sizes of the different components,

gice = Ĝ�1, ;1,� − Ĝ�1, ;1,1� ,

goce = Ĝ�,1;,1� − Ĝ�1,1;,1� ,

gitf = Ĝ�1, ;,� − Ĝ�1, ;1,� − Ĝ�1, ;,1� + Ĝ�1, ;1,1� ,

gotf = Ĝ�, ; ,1� − Ĝ�,1;,1� − Ĝ�1, ;,1� + Ĝ�1,1;,1� ,

gsce = 1 − Ĝ�1, ;,� − Ĝ�, ; ,1� + Ĝ�1, ;,1� . �9�

Notice that the sizes of the interfaces can also be written as

gitf = Ĝ�1, ;,� − Ĝ�1, ;,1� − gice,

gotf = Ĝ�, ; ,1� − Ĝ�1, ;,1� − goce. �10�

The set of Eqs. �7�–�9� determines completely the relative
sizes in number of edges of the main giant components of the
edge percolation map of two-point correlated purely directed
networks.

III. UNCORRELATED PURELY DIRECTED NETWORKS

The formal solution given in the previous section be-
comes simpler for the classical null model of uncorrelated
networks. This will allow us to perform further analytical
computations that will be checked against simulation results
in order to contrast the accuracy of the theory.

The absence of two-point correlations make it possible
to factorize the joint degree distribution, P�k ,k��
= �ki�koP�k�P�k��� / �ki	2, and the conditional degree distribu-
tions also simplify

Po�k��k� =
ki�P�k��

�ki	
, Pi�k��k� =

ko�P�k��
�ki	

. �11�

In this situation, Eqs. �7� evaluated in z=1 reduce to

ĝi�1�k� � ĝi�1� = �
k

koP�k�
�ki	

ĝi�1�ki,

ĝo�1�k� � ĝo�1� = �
k

kiP�k�
�ki	

ĝo�1�ko, �12�

so that the relative sizes in number of edges of the different
components in the uncorrelated case just depend on the joint
degree distribution P�k� and the single-node in and out gen-
erating functions ĝi�1� and ĝo�1�, and can be written as

gice = �
k

kiP�k�
�ki	

ĝi�1�ki�1 − ĝo�1�ko� ,

goce = �
k

koP�k�
�ki	

ĝo�1�ko�1 − ĝi�1�ki� ,

gitf = ĝi�1��1 − ĝo�1�� − gice,

gotf = ĝo�1��1 − ĝi�1�� − goce,

gsce = �1 − ĝi�1���1 − ĝo�1�� . �13�

If local correlations are also absent, the expressions above
become even simpler,

gice = �1 − ĝo�1���
ki

kiĝi�1�kiP�ki�
�ki	

,

goce = �1 − ĝi�1���
ko

koĝo�1�koP�ko�
�ki	

,

gitf = �1 − ĝo�1��ĝi�1� − gice,

gotf = �1 − ĝi�1��ĝo�1� − goce,

gsce = �1 − ĝi�1���1 − ĝo�1�� , �14�

with

ĝi�1� = �
ki

P�ki�ĝi�1�ki,

ĝo�1� = �
ko

P�ko�ĝo�1�ko. �15�

In order to ascertain the accuracy of the theory, we con-
trast the analytical results with those obtained from simulat-
ing uncorrelated purely directed networks with given joint
degree distribution of the form P�k�= P�ki�P�ko�. Uncorre-
lated networks are generated according to a slightly modified
version of the Molloy-Reed prescription �7,8�—which is
based on the configuration model �22,23� and constructs
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maximally random networks with a given degree
sequence—to produce directed connections controlling that
�i ki=�o ko and also taking care of avoiding multiple and
self-connections.

A. Exponential in- and out-degree distributions

For the first case study, we chose P�ki� and P�ko� of the
form

P�x� =
�1 − P0�2

�x	

1 −

�1 − P0�
�x	

�x−1

, x � 1, �16�

with x�ki and P0� P�0�� P0
i , or x�ko and P0� P�0�� P0

o,
so that a full analytical solution is available. The sizes of the
giant components in the edge percolation map for this par-
ticular joint degree distribution just depend on the param-
eters P0

i and P0
o and the average degree �k	= �ki	= �ko	. Sub-

stituting Eqs. �16� into Eqs. �15�, the solutions are found to
be

ĝi�1� =
P0

i

qi , ĝo�1� =
P0

o

qo , q = 1 −
1 − P0

�ki	
, �17�

and the relative sizes

gice =
ĝi�1��1 − ĝo�1��

�ki	2 ,

goce =
ĝo�1��1 − ĝi�1��

�ki	2 ,

gitf =
ĝi�1��1 − ĝo�1��

�ki	2 ��ki	2 − 1� ,

gotf =
ĝo�1��1 − ĝi�1��

�ki	2 ��ki	2 − 1� ,

gsce = �1 − ĝi�1���1 − ĝo�1�� . �18�

We compared these results with direct measures of the edge
components on a synthetic set of purely directed random
networks with N=105. We fix the values P0

i =0.4, P0
o=0.8,

and vary the average degree from �k	=1 to �k	=10. As Fig. 2
shows, the conformity of our formulas to the simulation re-
sults is excellent. Notice also that for this particular choice of
the parameters P0

i and P0
o the out interface, OCE, is by far the

biggest edge component in the percolated phase for all val-
ues of the average degree above approximately 1.5, followed
with a noticeable difference by the edge strongly connected
component, SCE, and the in interface, ICE. In this example,
the interfaces are much stronger than the edge in and out
components, practically absent for high degrees. This edge
percolation map is seen to be quite stable for most of the
average degree range.

B. Scale-free in-degree and exponential out-degree
distributions

In some real networks, such as the World Wide Web
�WWW� �24� for instance, the in-degree distribution exhibits

a heavy-tailed form well approximated by a power-law be-
havior P�ki��ki

−�, at the same time that the out-degree dis-
tribution P�ko� presents clear exponential cutoffs. In biology,
transcriptional regulatory networks are characterized by the
reflexive situation in which an incoming degree distribution
that decays faster than a power law can be observed along
with a scale-free outgoing degree distribution �25�. It is then
particularly interesting to see what happens for power-law
in- or out-degree distributions when combined to exponential
out or in degree ones. In this example, the in-degree distri-
bution is taken to follow a scale-free form of the type

P�ki� =
�1 − P0

i �
����ki

� , ki � 1, �19�

where ���� is the � Riemann function and P�0�= P0
i . The

out-degree distribution is given again by Eq. �16�. The set of
Eqs. �15� is solved numerically and plugged into Eqs. �14� to
obtain the relative sizes of the edge components and the re-
sults are compared to direct measures of the edge percolation
map on a set of synthetically generated networks with N
=5�105 nodes. We take �=2.2, P0

o=0.4, and vary the aver-
age degree �k	= �ki	= �ko	 until the maximum possible value
is reached by adjusting P0

i . This upper boundary in the aver-
age degree is due to the fact that, since P0

i =1
− �ki	���� /���−1�, values above the threshold impose a
negative P0

i and are not realizable. The theoretical value for
this threshold is ���−1� /����.
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FIG. 2. �Color online� �Top� Relative sizes of the main giant
components in the edge percolation map of networks with exponen-
tial in- and out-degree distributions as a function of the average
degree �k	= �ki	= �ko	. Simulation results �dots� correspond to one-
realization measures on synthetic networks with N=105 vertices,
P0

i =0.4, and P0
o=0.8. Solid lines are the analytical solution equa-

tions �17� and �18�. �Bottom� Ratio of the relative sizes of the giant
interfaces to the edge in and out components as a function of the
average degree for the same networks �dots�. The solid line corre-
sponds to the analytical ratio equation �20�.
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Once again, our predictions compare extremely well with
the measures on the simulated networks, see Fig. 3. Interest-
ingly, and in contrast to what was obtained in the previous
example, the edge percolation map changes dramatically de-
pending on the average degree. For small values, but big
enough to ensure that the system is in the percolated phase,
the edge in-component, ICE, and the in interface, ITF, are
predominant. After reaching a maximum they decay to even-
tually disappear at the average degree threshold. However,
the rest of the edge components grow steadily with the av-
erage degree, so that for high values the edge strongly con-
nected component, SCE, and the out interface, OTF, domi-
nate.

IV. INTERFACES

Interfaces arise as distinctive elements of the edge perco-
lation map. Their size could be much larger than that of the
ICE and OCE, as shown in the bottom graph of Fig. 2. In the
particular case of completely uncorrelated networks with ex-
ponential in- and out-degree distributions, the ratio of the
relative sizes of the interfaces to those of the pure compo-
nents can be calculated analytically to grow quadratically
with the average degree

gitf

gice
=

gotf

goce
= �k	2 − 1. �20�

This result is very interesting because it suggests that, at least
for exponential distributions, the traditional IN and OUT
components of the node percolation map show a shallow
architecture mainly formed by leaf edges emanating from or
pointing to the SCC. As a consequence, and to give a mental
image, the bow-tie structure of those networks becomes a
“hairy ball.”

All this points to a rich second-order fine structure that
could play a central role in the investigation of how topology
is related to functionality. In particular, the conformation of
the interfaces and, more specifically, the distinction of leaf
edges from connectors, is fundamental in order to assess the
efficiency of the global flow or the risks of bottleneck ef-
fects. Further discussion about the internal structure of inter-
faces and possible implications will be provided in a forth-
coming work.

Interfaces have a hybrid nature from the point of view of
node components. In order to calculate internal average de-
grees, it is not clear whether they should be assigned to one
node component or another. If one considers for instance the
subset of nodes in the SCC with all their connections, inter-
nal or not, it is found that

�
SCC

ki

E
= gsce + gitf,

�
SCC

ko

E
= gsce + gotf , �21�

where E is the total number of edges in the network. As a
consequence, the detailed balance condition, Eq. �2�, will not
be accomplished in general, �SCCki��SCCko, except when
both interfaces are of equal sizes. The same happens for the
subsets of nodes in the IN and the OUT, where from the
point of view of detailed balance there is an excess out and in
degree, respectively. The interfaces are precisely responsible
for these imbalances.

We explore once more as a null model that can be fully
calculated analytically the completely uncorrelated network,
with no local or degree-degree correlations. The sizes of the
main components in the node percolation map can be written
�see Refs. �11,14,18��

gscc = 1 − ĝo�1� − ĝi�1� + ĝo�1�ĝi�1� ,

gin = 1 − ĝo�1� − gscc,

gout = 1 − ĝi�1� − gscc, �22�

where ĝi�1� and ĝo�1� are the solutions of Eq. �15�. Compar-
ing Eq. �22� and Eq. �14�, it is found that the relative sizes in
number of nodes of the IN, OUT, and SCC are the same as
the relative sizes in number of edges of the ICE+ITF,
OCE+OTF, and SCE, respectively. In other words, the aver-
age degree of the whole network is preserved in the different
components if the in and out interfaces are assigned to the in
and out components, respectively. This is in particular valid
for the previous examples of uncorrelated networks with ex-
ponential or scale-free in-degree distribution and exponential
out-degree distribution.

V. CONCLUSIONS

We investigated analytically how edges organize in the
percolated phase of purely directed random networks. The
general case of local and degree-degree correlations is for-
mally solved and the relative sizes of the five main giant
edge components are characterized quantitatively. The re-
sults for uncorrelated networks are found to be in very good
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FIG. 3. �Color online� Relative sizes of the giant components in
the edge percolation map of uncorrelated networks with scale-free
in-degree distribution, �=2.2, and exponential out-degree distribu-
tion, P0

out=0.4, as a function of the average degree �k	= �ki	= �ko	.
Simulation results �dots� correspond to synthetic networks of size
N=5�105 vertices, three realizations for the first two points and
one realization for the rest. Solid lines correspond to the numerical
solutions of Eqs. �14� and �15�.
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agreement with direct measures on synthetic networks,
which could present very different edge percolation maps
depending on their topological properties. The node percola-
tion map is in this way complemented by the edge percola-
tion map, conforming to a percolation landscape that gives a
more detailed topological description of the structure of glo-
bally connected systems. Moreover, interfaces play a key
role bridging core a periphery. Their particular organization
could produce from “hairy ball” percolation landscapes to
bottleneck straits, two very different conformations regard-
ing structural efficiency.

In this work, we have restricted to purely directed net-
works, a good approximation in many cases where flow or

transport, when present in both directions, is asymmetric.
Nevertheless, the same ideas can be extended to semidirected
networks, the most general and realistic ones. For those, ana-
lytical calculations could be a bit more intricate due to the
nontrivial correlations associated to reciprocity.
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